
Geochemical characteristics,Zircon U-Pb isotopic and the indicative geotectonic environment of the granitoids in Lupa terrain, Tanzania
HE Shengfei, LIU Xiaoyang, SUN Kai, XU Kangkang, GONG Penghui
Geochemical characteristics,Zircon U-Pb isotopic and the indicative geotectonic environment of the granitoids in Lupa terrain, Tanzania
This paper is the result of rock geochemistry. [Objective] Lupa terrane is the second largest gold ore concentration area in Tanzania, and its formation age and genetic mechanism are controversy. [Methods] Through the analysis of zircon geochronology and geochemical characteristics of granite, the formation age and genetic mechanism of the Lupa terrane granite are determined. [Results] Zircon U-Pb geochronology studies indicate that there are two types of granites in the Lupa terrane: Neoarchean granites (2 663 ± 22 Ma~2 778 ± 13 Ma); Paleoproterozoic granite (1 944 ± 10 Ma~2 006 ± 10 Ma), and their geochemical characteristics are similar to those of I-type granite. The other basic rocks, carbonates and other rocks distributed within the earth represent the beginning of the breakup of the Rodinian super continent.[Conclusions] The geochemical characteristics of rocks indicate that the material source of non-A-type granite is not from the mantle, but the result of crustal remelting. The tectonic environment discrimination diagram of the granite shows that the sample projection falls in the volcanic arc granite, and the granite is concentrated in the continental granite area, away from the oceanic granite, oceanic basalt and gabbro area. The Neoarchean and Paleoproterozoic granites were formed in the continental margin arc.
Highlights:Through the study of zircon U-Pb chronology and rock geochemical characteristics, it is determined that the granite of Lupa terrane was formed in Paleoproterozoic, which is the result of crustal remelting, and the tectonic environment belongs to the continental margin arc.
Zircon U-Pb geochronology / geochemical characteristics / Lupa terrane / Tanzania {{custom_keyword}} /
中文参考文献
龚鹏辉,刘晓阳,孙凯,等.2023.浅析坦桑尼亚卡鲁超群地质特征及 含矿性[J].华北地质,46(1):50-60.
何胜飞,刘晓阳,孙凯,等. 2021.坦桑尼亚古元古代姆柏兹地体锆石 U-Pb-Hf同位素特征及其指示的构造环境研究[J].地质学报,95 (4),976-998.
李生喜,何碧,杨博,等. 2023. 南天山地块塔格拉克地区二长花岗岩 锆石 U-Pb 年代学、地球化学特征:对壳源岩浆成因和构造背景 的限定[J]. 中国地质,50(2):622-639.
刘晓阳,龚鹏辉,许康康,等. 2020.坦桑尼亚乌本迪活动带西北部元 古宙沉积盆地碎屑锆石U-Pb年龄及其地质意义[J]. 地质调查与 研究,43(1):5-18.
孙凯,张航,卢宜冠,等.2022.中非铜钴成矿带地质特征与找矿前景 分析[J].中国地质,49(1):103-120.
王杰,刘晓阳,任军平,等.2022.坦桑尼亚前寒武纪成矿作用[J].华北 地质,45(1):101-110.
吴兴源,刘晓阳,王杰,等 . 2018.坦桑尼亚乌本迪造山带的演化、金 成矿作用研究进展及中国—坦桑尼亚造山型金矿床的异同[J]. 地质论评,64(01):165-182.
肖庆辉. 2002.花岗岩研究思维与方法[M]. 北京: 地质出版社,1-294.
许康康, 刘晓阳,孙凯,等. 2021.坦桑尼亚西南部乌本迪带内Nsam‐ ya 镁铁-超镁铁质杂岩体的锆石 U-Pb 年龄、地球化学特征及构 造意义[J]. 地质学报,95(4):1174-1190.
许康康,刘晓阳,孙凯,等 .2020. 坦桑尼亚乌本迪带内花岗岩类的 LA-MC-ICP-MS 锆石 U-Pb 年龄及地质意义[J]. 地质调查与研 究,43(1):55-71.
许康康,刘晓阳,赵晓博,等 . 2024.坦桑尼亚乌本迪带内基性-酸性 岩类的锆石 U-Pb 年龄、地球化学特征及地质意义[J]. 西北地 质,57(3):210-223.
许康康,刘晓阳,王杰,等. 2019.坦桑尼亚西南部乌本迪带的构造演 化特征[J]. 地质与勘探,55(02):585-599.
杨学明,杨晓勇,陈双喜 .2000.岩石地球化学[M].合肥:中国科学技 术大学出版社,1-275.
曾国平,王建雄,向文帅,等. 2024.厄立特里亚西部新元古代岛弧花岗岩 对东非造山带构造演化的指示意义[J].西北地质,57(2):159-173.
郑永飞,杨进辉,宋述光,等.2013.化学地球动力学研究进展[J].矿物 岩石地球化学通报,32(1):1-24.
References
Boniface N, Appel P. 2018.Neoproterozoic reworking of the Ubendian Belt crust: Implication for an orogenic cycle between the Tanza‐ nia Craton and Bangweulu Block during the assembly of Gondwa‐ na [J]. Precambrian Research, 305, 358-385.
Boniface N, Schenk V, Appel P. 2012. Paleoproterozoic eclogites of MORB-type chemistry and three Proterozoic orogenic cycles in the Ubendian Belt (Tanzania): Evidence from monazite and zir‐ con geochronology, and geochemistry [J]. Precambrian Research, 192-195:16-33.
Boniface N, Schenk V,. Appel P. 2014. Mesoproterozoic high-grade metamorphism in pelitic rocks of the northwestern Ubendian Belt: Implication for the extension of the Kibaran intra-continental ba‐ sins to Tanzania [J]. Precambrian Research, 249: 215-228.
Boniface N, Schenk V. 2012. Neoproterozoic eclogites in the Paleopro‐ terozoic Ubendian Belt of Tanzania: Evidence for a Pan-African suture between the Bangweulu Block and the Tanzania Craton [J]. Precambrian Research, 208-211: 72-89.
Cahen L, Snelling N J. 1966.The Geochronology of Equatorial Afri‐ ca[M]. North Holland, Amsterdam, 1-195. Coleman R G, Peterman Z E. 1975.Oceanic plagiogranite[J]. Journal of Geophysical Research, 80(8):1099-1108.
Collins W, Beams S, White A, et al. 1982. Nature and Origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and pertrology, 80(2): 189 - 200.
Collins A S, Reddy S M, Buchan C, Mruma A. 2004. Temporal con‐ straints on Palaeoproterozoic eclogite formation and exhumation (Usagaran Orogen, Tanzania) [J]. Earth and Planetary Science Let‐ ters 224 (1 - 2), 175-192.
Daly M C, Klerkx J, Nanyaro J T. 1985. Early Proterozoic terranes and strike-slip accretion in the Ubendian Belt of southwest Tanza‐ nia [J]. Terra Cognita, 5: 257. Daly M C. 1988.Crustal shear zones in central Africa: a kinematic ap‐ proach to Proterozoic tectonics [J]. Episodes, 11: 5-11.
Geng J Z, Qiu K F, Gou Z Y, et al. 2017. Tectonic regime switchover of Triassic Western Qinling Orogen: Constraints from LA-ICP-MS zircon U - Pb geochronology and Lu - Hf isotope of Dangchuan in‐ trusive complex in Gansu, China [J]. Geochemistry, 77: 637 - 651.
Guest N J. 1954.Petrographical notes on some rocks outcropping near the road from Chunya to Itigi [J]. Records of the geological sur‐ vey of Tanganyika, IV, 105 - 109.
Kazimoto E O, Schenk V, Berndt J. 2014. Neoarchean and Paleopro‐ terozoic crust formation in the Ubendian Belt of Tanzania: In‐ sights from zircon geochronology and geochemistry [J]. Precam‐ brian Research, 252: 119 - 144.
Lawley C J M, Selby D, Condon D J, et al. 2013a.Lithogeochemistry, geochronology and geodynamic setting of the Lupa Terrane, Tan‐ zania: implications for the extent of the Archean Tanzanian Cra‐ ton [J]. Precambrian Research, 231: 174 - 193.
Lawley C J M., Selby D., Condon D., et al. 2014. Palaeoproterozoic orogenic gold style mineralization at the Southwestern Archaean Tanzanian cratonic margin, Lupa Goldfield, SW Tanzania: Impli‐ cations from U-Pb titanite geochronology [J]. Gondwana Re‐ search, 26(3-4), 1141 - 1158.
Lawley C, Selby D, Imber J. 2013b.Re-Os Molybdenite, Pyrite, and Chalcopyrite Geochronology, Lupa Goldfield, Southwestern Tan‐ zania: Tracing Metallogenic Time Scales at Midcrustal Shear Zones Hosting Orogenic Au Deposits [J]. Economic geology and the bulletin of the Society of Economic Geologists, 108(7), 1591 - 1613.
Leger C, Barth A, Falk D, et al. 2015. Explanatory notes for the minerogenic map of Tanzania [M].Dodoma: Geological Survey of Tanzania. 1-376.
Lenoir J L, Liegeois J P, Theunissen K et al. 1994.The Palaeoprotero‐ zoic Ubendian shear Belt in Tanzania: geochronology and struc‐ ture [J]. Journal of African Earth Sciences, 19: 169-184.
Liu Y S, Hu Z C, Zong K Q, et al. 2010.Reappraisement and refine‐ ment of zircon U-Pb isotope and trace element analyses by LAICP-MS [J]. Chinese Science Bulletin, 55(15): 1535-1546.
Ludwig K R. 2000.User’s Manual for Isoplot/Ex Version 2.2: A Geo‐ chronological Toolkit for Microsoft Excel. Berkeley Geochronolo‐ gy Center [J]. Special Publication, 1: 1-50.
Manya S. 2012. SHRIMP zircon U-Pb dating of the mafic and felsic in‐ trusive rocks of the Saza area in the Lupa goldfields, southwest‐ ern Tanzania: Implication for gold mineralization [J]. Natural Sci‐ ence, 04(09): 724-730.
Manya S. 2014. Geochemistry of the Palaeoproterozoic gabbros and granodiorites of the Saza area in the Lupa Goldfield, southwestern Tanzania [J]. Journal of African Earth Sciences, 100: 401-408.
Manya S. 2011. Nd-isotopic mapping of the Archaean - Proterozoic boundary in southwestern Tanzania: Implication for the size of the Archaean Tanzania Craton [J]. Gondwana Research, 20(2-3), 325- 334.
MÖller, A., Appel, P., Mezger, K., Schenk, V., 1995. Evidence for a 2 Ga subduction zone: eclogites in the Usagaran Belt of Tanza‐ nia [J]. Geology 23 (12), 1067-1070.
Pearce J A, Harris N B, Tindle A G. 1984.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Jour‐ nal of Petrology, 25: 956-983.
Sun S S, McDonough W F. 1989.Chemical and isotope systematics of oceanic basalts: Implications for mantle composition and process‐ es. In: Saunders A D, ed. Magmatism in Ocean Basins[C]. Spec Publ Geol Soc Lond, 42: 313-345.
Tulibonywa T, Manya S, Maboko M A H. 2015.Palaeoproterozoic vol‐ canism and granitic magmatism in the Ngualla area of the Ubendi‐ an Belt, SW Tanzania: Constraints from SHRIMP U-Pb zircon ag‐ es, and Sm-Nd isotope systematics [J]. Precambrian Research, 256: 120-130.
Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geo‐ chemical characteristics, discrimination and petrogenesis[J]. Con‐ tributions to Mineralogy and pertrology, 95(4): 407 - 419.
Wilson M. 1989.Igneous Petrogenesis [M]. Chapman and hall, London, 1-466.
/
〈 |
|
〉 |